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ABSTRACT

-JThis paper is the author's contribution to the volume 4Leonardt Euler-

Gedenkband 19830 to be published in Basel, Switzerland, in 1983 in honor of

Euler's bicentenial. It is mainly devoted to the exponential Euler spline

S(xt;) of degree n to the base t, and also sketches in §7 their role in

cardinal spline interpolation. It also presents two new items: 1. In 13 a

simplified derivation of the recursive relation

S (xt) = f[x+1 S (ut)du/fl Sn(u t)du (n > 2)Sn x Sn-1 0Sn-1=

is given, a relation already discussed in Reference (10]. 2. In §6 the

approximation of the exponential function 2 x by S n(x t) is made more

effective by a prelimi--ry subdivision of the interval [0,1] into 2 r

parts. By this device our approximation becomes competitive with the modern

approximations of 2 x in [0,1] by rational functions. The paper has two

aims: 1. As a tribute to Euler, 2. To make the exponential Euler splines

S(xjt) better known.
n
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SIGNIFICANCE AND EXPLANATION

This paper is the author's contribution to the volume "Leonardt Euler -

Gedenkband 1983" to be published in Basel, Switzerland, in 1983 in honor of

Euler's bicentenial. It has two aims: 1. As a tribute to Euler, 2. To point

out Euler's contributions to the subjects of the title.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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EULER'S CONTRIBUTION TO CARDINAL SPLINE INTERPOLATION:

THE EXPONENTIAL EULER SPLINES

I. J. Schoenberg

Introduction. In my monograph [8] of 1973, dedicated to Euler, I already discussed

the subjects of the title. On the occasion of the bicentenial of Leonardt Euler we present

here an outline of these results, which seem to fit well in what we think of as Eulerian

Mathematics.

Our main subject are the exponential Euler splines. In §i we define them, and §2

shows their close connection with the Eulerian polynomials. In §3 we derive in a simpler

way a recursive construction already described in [10]. §§4 and 5 show that the

exponential Euler splines of base t converge to the exponential function tK as their

degree tends to infinity. §6 presents an application to the computation of f(x) = 2
x .

Finally, in §7 we sketch the role of the exponential splines in the problem of cardinal

spline interpolation.

1. The exponential Euler splines. We need a few definitions. Let Sn = {Sn(x)}

denote the class of cardinal splines Sn(x) of degree n (> 1). This means that Sn(x)

reduces to a polynomial of degree < n in each unit interval (V, V+1) (V e Z), with the

strong restriction that

(1.1) S (x) e Cn- (R)n

In particular St(x) e means that SI(x) is a continuous piecewise linear function

with possible vertices (or "knots") at the integers. Early in this century it was found

convenient to represent S1(x) as a linear combination of shifted versions of the "roof-

function"

Q2 (x) = x in (0,1], = 2 - x in [1,2], = 0 elsewhere

so that

S1 x) I W cjQ2(x - j)

represents uniquely every element of S1 .

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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This extends to the class Sn in terms of the forward 1-soplint

n+1

(1.2) Qn+lX nt V- -1 V

where u+ max(O,u). Like Q2(x)l the a-spline Q,+1(X) has remarkable propeaiess

(1.3) Qn+l(x) > 0 in (O,n+1), - 0 outside (0,1n1)

Moreover, it in bell-shaped in (O,n+l) and symtric in Its midpoint, i.e.

(1.4) Qn+t(n + I - X) - Qn+t(x)

clearly Qn+l(X - J) e Sn for all integers J, and those are the elements of Sn of

least support. Again, every element S(x) e S n  admits a uniqueOstandardO representation

of the form

(1.5) s(x) = o Q 1n+(x "

Definition 1: The exponential !glines of base t. &et t be a real or corlex

number 0 0, and let

(1.6) n(x;t)= tjQ+(x-j .

We call this function the exponential spline of degree n and besm t.

Clearly

0n(x+l t) - Z tnl(X+-j) -t1 (w-) - t n(Xlt)

Using the representation (1.5) and its unicity, it is easily shown ((7, Lea 21) that the

most general solution of the functional equation

(1.7) S(x + 1) - t 8(x), where 5(x) 6 Sn

is given by

(1.8) 8(x) - C. n(x;t), (C Is a constant)

If

(1.9) t =Itfl* v _(w t 0 0,

let us try to interpolate the exponential function

(.10) t
x 

n Itl
x AIs x

at the integers by the function (1.8) so that

(1.11) S(V) t u  for all integers V

-2-



Because of (1.7) it suffices to determine the constant C in (1.8) so that S(O) 1 1. The

answer is clearly

* (xst)
n

(1.12) 
S(x) - _ (Oht)

n

but this is possible if and only if n(Ojt) ' 0. When this holds is easily decided, for

by (1.6) and (1.4) we have

n (O;t) - E t Q (-j)= t tQ (n+l+j)
n n+ +

and setting n+j - v we find that

n-1
(1.13) 0n (O;t) = -VQn+ (V+1) = t-n I Qn+l(V+1)tv

v V0

The result: The interpolation (1.11) with S(x) of the form (1.8) is possible if and only

if
n-1

(1.14) 11nlt) = ni I Qn+ (j+)ti P 0
0

The polynomial 11 (t) defined by (1.14) is called the Euler-Frobenius polynomial. It is ai n

reciprocal monic polynomial having integer coefficients and having only negative and simple

zeros A

(1.15) sn-1 < An-2  < A 2 A1 (< 0)

Definition 2: The exponential Euler splines Sn(Xtt). Assuming that A (t) JO 0,

hence that

(1.16) 4 (Ot) 0 0

we define
# (x;t)

n'1.17) Sn(Xat) = n 0t
'., n n(Ot

To summarize Sn(x;t) is the unique cardinal spline interpolant of the exponential

tx  satisfying the functional equation

(1.18) Sn(X+ltt) - t Sn(X;t), (x e R)

-3-



2. The construction of S (xit) in terms of Eulerian Polynomials. Hnw do we

construct Sn(xst)? Clearly, its expression by (1.17) is too laborious. This is where

Euler comes in. Following Euler, we define the a n(t) by the expansion

(2.1) t- = anlt) n

t- 0 n

The an(t) are rational functions of the form

1(t)

(2.2) a (t) - n
n (t_)n

where H1 (t) are the polynomials (1.14). For a proof see [7, Lemma 7 on page 391]. Then

1 (t) may also be defined by Euler's expansionsn

I!nCt) -I~it

(2.3) n X Vtl) t

(l-t)
n + l  

V-0
We find that

0( -W - 1, 2lt) - t + 1, H3Ct) 3 t
2 

+ 4t + 1

4 lt)- t
3 

+ lit 2 
+ lit + 1, 1i5 t) - t

4 
4 26t

3 
+ 66t

2 
+ 26t + 1

On multiplying (2.1) by e
x s 

we obtain Euler's generating function

(2.4) t-1xz - An(x
;
t) n

t-a
Z  0 ni

of the exponential Ruler polynomials

(2.5) Axgt) - 5 n i + C 4)a (t)-2 t)
n 21 a1 , L 2 ant

which evidently form an Appell sequence (see [2, Chap. VII, 178]). L. Carlitz (1] writes

An(X;t)- H (xit) and calls them Eulerian polynomials. See also [1) for extensive

references.

The coefficients an(t) admit a recursive computation: Multiplying (2.1) by t-ez

we obtain

" t (t) ( 1 (n) Ct) + .. + a (t)t-1- n sn 1 a1 n n

0 0 ni

-4-



and by identifying coefficients of zn we obtain

(2.6) 1 + (')al(t) + (t) + * + a (n 1,2,...)

which show that

(2.7) a (t) = - I + (n)a(t) + ... + n anCt)1, (+ n - 1,2....)n t-i I I n-i n-i~)'(

Let us remember that we wish to construct Sn(x;t), and that we may exclude the

trivial case when t - 1, because evidently Sn(X;1) - I for all x. We ask: What can

we say about the function F(x) defined by

(2.8) F(x) A n(x;t) if 0 < x < 1

and satisfying

(2.9) F(x+1) - t F(x) for all x ?

We claim that

(2.10) F(x) e Cn-l(R)

Indeed, from (2.10), and using (2.9) and (2.8), we obtain by differentiation of (2.9)

and setting x = 0, that we must have that

(2(11) A l(V)(lt) - t A (V)(Ot), (V = I,...,n-I) for n > 1n n=

However, these relations, together with the fact that An (x;t) is monic, are known

characteristic properties of An(xit), which are derived from (2.4) by v

differentiations with -espect to x, subsequently setting x - 0 and x - I in the

result. By our result (1.8) concerning (1.7), it follows that

(2.12) F(x) = C * (xit)
n

Assuming (1.14), this proves that Sn(xst) = An(Xlt)/An(0it) in [0,1], hence that
(2.13) S (xit) _ (,n + (n)&l(t)xn-i + --- + a (t))/anCt), if 0 < x <

nIIn n

Remarks. 1. In [1, page 256, (4.5)] Carlitz already defined the cardinal spline

F(x) satisfying (2.8) and (2.9).

2. The continuity requirement (2.11) has been recently stated as a general principle

concerning the solutions of certain functional equations in the paper [3].

3. A recursive construction of the exponential Euler spline Sn(X;t). This is the

subject of my recent paper [10], with the modification that there the sequence

-5-
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(3.1) S I(x t 3(tt) 1e j-t)

8 2 ( 1t) S4(jt)

is recursively constructed. We assume t to be non-negative, t 0 0. For the 3-spline

(3.2) Qn(x) ( 0

we easily verify by integration and summation by pazts the :elation

(3.3) f.
x* 

gn(u)cdu - Q..I(x~l)

For the exponential spline (1.6) this Implies that

jx+1 # (uit)du I t1 j 2+1 Q (a-J)du -I: tj 1 w-j+t wd

x n-1 n j 2-j

- I t 2 +1 (x-j+1) - t tn+(x-j)
j j

and therefore

(3.4) 0x  1 (urt)du - t a (zXt)

For the exponential Suler spline this implies our first proposition

I. if t is not negative, then

(3.5) Sn (x t ) - f+'' 8n (uut)du/' a .i(ust)du, (n - 2,3....)

This is remarkable recursive construction: starting from the linear Uuler spline

4 SI(xit), (3.5) recursively furnishes all higher degree Sn(xit). Also notice that (3.5)

does not depend on t explicitly.

Ve also need the following result established In (s Lwcutre 2, 15 1

II. if

LeL

which i!plies that necative values of t are excluded, then

(3.7) 0 n(xt) 0 0 for all real x

The reason given in (O, loc.cit.I is as followst 1. If t 0 , then the curve of the

complex plane

i -- -



(3.8) r : z - (xit) (-4 < x < +)n

is clearly contained within the positive half of the real axis. 2. If in (3.6) we have

0 < a < w, say, then the curve (3.8) spirals convexly about the origin, never assuming the

value z - 0. This is shown by induction in n.

4. A series a2 nsion of Sn(Xt). Again we assume that (3.6) holds. Already in (7,

17] we derived by means of residue theory the following proposition

III. Let

(4.1) Y = log t - log Itl + im, hence t - e y

and let (3.6) hold. Then

(4.2) Sn (xt) = n+1 e(Y+ 2vik)x/X 1
S(Y + 2ik) (Y+ 2vik)

An alternative derivation of (4.2) uses the recursive relation (3.5) and proceeds as

follows. To simplify notations we write

(4.3) Sn(x) = Sn(Xt)

Observe that S1 (x) is the linear spline that interpolates the sequence (tk), and so

S(X) - 1 (t-1)x if 0 < x <1
-I

However S1 (x)t-x  is periodic with period 1, because Sl(x+l)t - x - t = tSl(x) t - x - 1 =

Sl(X)t-x  Sl(x)e'¥X. Let its Fourier series be S (x)e-YX ak a * For its

I Lt 1k

coefficients we find by an integration by parts (see [10, 5]) that

2(t-t)
2  

1

skI2vt 2
(Y+ 2wik)

and therefore
2 (Y+ 2wik)x

(4.4) S(x) 2t) e (  2
- (Y+ 2Wik)

Since Sl(x) is up to a non-vanishing factor identical with 9l(xlt), it suffices, by

(3.5), to perform the operation xX(-)du on Sl(x) a total of n-1 times, and to
S'x

divide the final result by its value at x-0. However

(4.5) f ex+1 (Y+ 2wik)Udu . e -1 (Y+2wik)x
y+2wik

-7-
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Performing the operations as described on (4.4), we obtain the fraction (4.2).

5. S (xit) + tx as n * * for non-negative t. Let us assume (3.6), so that t is

non-negative, and write (4.2) as

(5.1 Sn (x;t)t -x  I n e k/ +1
n (Y+2wik) - (y+2wik)n+ l

n+ 1We multiply each of the two series of this fraction by Y ; except for the two terms

for k - 0, which are 1 in both series, the k-th terms in both series are in absolute

n+1
value - Iy/(Y+2wik) l

. Writing

(5.2) P - logItI, hence Y - log t - P + i ,

we find that

ly/(Y+21ikl2 - I(P + ia)I2/I + i(a+2wik)l
2  2

0 +(a+2wk)
2

From -W < a < I we find that

(5.3) Ia + 2TkI Z 2w - lal > lal

and therefore
(5.)2P2 1,V

(5.41 max lY/(Y+2wlk)l - 2 2 ia )2- 6 (

kc p +(2w-jol)

by (5.3). Moreover 6 > 0, because P and a can not both vanish, as we assume that
t

t~l.

Now it should be clear that the right side of (5.1) is - I + 0 (6n+1) and that we may

write
S (x;t)(5.5) n 1 "n+ l

(5) t - 0( 6 t ) uniformly for x e R

Notice that the approximation (5.5) deteriorates as a approaches X I because 6t

approaches 1. As the constant in front of the 0-term of (5.5) depends on t, but not

on x and not on n, we have established the proposition

IV. If t is not negative, then

(5.6) lim S (x;t) - t x  Itt x e for all real x
n-

-8
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6. T e computation=of=th exponential function f(x) = 2
x
. Can the approximation

(2.13), for t = 2, be used to compute 2
x  

in view of the convergence theorem (5.6)? In

[7, §111], and again in [10, §5] I stated that this seems practicable. Actually we find

that this method does not compete in accuracy with the modern approximations of 2
x  

in

[0,1] by appropriate rational functions (see [5]). However, we will show that by

appropriate binary subdivisions of [0,1] our approach becomes competitive.

We introduce the natural number r and change variables by

(6.1) x - z
2r

defining F(z) by

(6.2) F(z) = 2 z/2 2 x f(x)

For the base

/2r
(6.3) t = 21/2

we have F(z) t
z
, and this we can approximate, in view of (5.6), by

(6.4) F(z) I S (U; 2/2n

Setting

(6.5) z = 2r x = [2 rx] + V = + 6, (0 < 0 < 1)

where [.] has its usual meaning, and

(6.6) v =[2rx]

However

(z21/2 V ) V/2 1/2
(6.7) Sn ( n t S (;t) - 2 S n (e2

and by (6.2) and (6.4) we have

(6.8) 2 
x  2v/ 2rS (0;21 /2r

n

We recall that by (2.13) we have

(6.9) S (OIt) = p (6), (0 < < 1)
n nr =

where Pn,r(u) is the polynomial

p (u) fun + n-i ... ant)/a (t)
n,r + +a ant)n n

(6.10)

+ (n) c(n) n

1,r nr

-9-



whose coefficients are compute by Euler's algorithm (2.7).

How close does S (O;t) approximate t 0? In (5.4) we have, by (6.3) and (5.2), thatn

a - 0 and P = logJti - (log 2)/2 , and so, dropping the term = 1 in the denominator,

we have

(6.11) t,r = 2 r

and (5.S) shows that

S n(t) 12 n+1
(6.12) r

t 2V2

We conclude that the approximation (6.8) will be close, provided that either n or r, or

both, are of some size.

We need the numerical values of the coefficients of the polynomial (6.10). 1 am

indebted to Fred Sauer, of the MW Computing Staff, for a 30 place table of the

coefficients

(6.13) c (n) for i - 1,...,ni n - 3, ... ,201 r - 0,1,...,16
i,r

Computing with a hand-held calculator, we record here only their values for r - 4 and n

= 3 to 12 decimal places:

(3) (3) (3)
(6.14) c 04332 16979 37, c .00093 82380 41, a34 .00001 38464 49

1614 C, 4(3  =.431673, 2,4 = 3,4
=

" .

These should give in (6.8) about eight decimal places of accuracy.

IF r
As an example we compute f(w) - 2 

. 
Here x - 1, z - 2 x - 16 - 50.26548 246, and

so V -50, 0 - .26548 24574. Since 50/16 - (25 + 24 + 2)/24 -2 + 1 + 2- 3 
- 3 + 1/8,

(6.8) becomes
2
w 

= 250/16 F(8) 8*21/8 P3,410)

We find from (6.14) that P3 ,4 (e) - 1.01156 7538, and finally

21 8.82497 7778

which is accurate to seven decimals. In this computation we have approximated 2
x  

by the

interpolating cubic spline S (16x;21/
1
6) having 24 _ 16 components in the interval

(0,11. In implementing (6.8) it is important to represent the integer V - [2rx) in

binary notation, as we have done above. In this way 2 v/2
r 

appears as a polynomial in

-10-



21/2r having only coefficients 0 or 1. For r - 4 and n - 9 Sauer's table of (6.13)

gives a result accurate to 21 decimals.

7. Cardinal spline interpolation. In this last section we sketch a solution of the

problem of cardinal spline interpolation ES, Lecture 4):

The (yj) being prescribed, we wish to find

(7.1) S(x) e n

such that

(7.2) S(J) - yj for all integers j

This problem is trivial if n I 1 and we may assume n > 2. We further restrict the

discussion to the case when

(7.3) the data (yj) and the solution S(x) are of power growth

meaning that jy I - Olil as j * t" for some Y 1 0, and that IS(x)l OIxI as

x + t*, for some 6 > 0. We shall deal only with the question of uniqueness of the

solution, because the exponential splines 4' (xit) play a decisive role.
n

We need the null-space

(7.4) S 0 {s(x); S(x) e Sn S(J) = 0 for all integers j}n n

and state 
O

0Lets 1. The linear subspace S n, of S has the dimension n I and is spanned

by the n - I exponential splines

(7.5) Sv (x) m n (x;Av) (V - 1,...,n-1) ,

where the Av  are the zeros (1.15) of the polynomial

(7.6) (t)- ni 0 n+1(J+1)t j

_0

That the S (x), called the eigensplines of are elements of S 0follows from

(1.13) and the functional equations

(7.7) SV(x+l) - AVSV(x), (V = 1,...,n-1) •

* Indeed, S (0) - 0 implies that S (J) 0 for all j. For a proof of Lemma I see (8,

Lecture 4, J31.

-11-



The polynomial H (t) being reciprocal, we haven

(7.8) An-1 I n-2 2

and there is an important distinction depending on the parity of n.

1. n - 2m-1 is odd. From the simplicity of the A it follows that
V

(7.9) A 2 2  < A < -1 < A < ... <
A < 0

0
By Lemma I S(x) e 0 implies thatn

n-1
(7.10) S(x) - cv SV(x)

The inequalities (7.9) and the behavior of the splines (7.5) at + and - implies that

(7.10) is of power growth if and only if all cv - 0. This is the basis of our first

result

V. If n - 2m-i is odd, and the (yj) are of power growth, then there exists a

unique S(x) e Sn of power growth satisfying (7.2).

2. n - 2m is even. Now we find by (7.8) that the A satisfy
V

(7.11) A < < km+1 < All -i< A < ... * A < 0

so that

17.i21 S(x) - *n(x;-i)

is one of the eigensplines. It satisfies Sm (X+l) - -S m(x), hence has period - 2;

N~rlund (6, Chap. 2, 1161 attributes it to Hermits and Sonine. The bounded SlX) i8 a

counter-example to the proposition V for even n.

We now abandon the class S and consider the new classn

(7.13) S ( (s x s(x + 1) e S ) .

n n

This is the class of midpoint cardinal splines having their knots at x = j+ -. Within

S we have the midpoint exponential splines defined by
n

(7.14) 4 (xt) - 4 (x + -1 t)
nn 2

When are these element of the null-space

(7.15) S*° - (s(x), six) e s*, S(j) - 0 for all J) ?

This depends on the vanishing of

-12-



* 1

4 (Olt) - n;t) Z E tJQn( -j) Z Z tjQ (n+l- +j)
n n 2 n+1 2n+1 2

Z inQ (j+ _- -n1
n+t 2 Qn(j 2~)0

which follows from (1.3). This shows that the eigensplines of S depend on the zeros ofn

the polynomial
n n

(7.16) H lt) - 2n nit Q n( + Iltj

n n+1 20

which is called the midpoint Euler-Frobenius polynomial. Again it is monic and reciprocal

having n simple and negative zeros U.:

(71)< < ... < P2 < 41 < 0(7.17) Un n-1 2  1

The analogue of Lemma I is
*0

Lemma 2. The linear subspace S , of S is of dimension n and it is spanned by

the n midpoint exponential splines

(7.18) SCIx) - 4 (x;IJ )  ( nix + -;pv), (v - 1,...,n)
n V n 2

It follows that the general element of S*0  is
n

n
(7.19) S(x) c v S:Cx)

1

The role of the parity of n is now reversed, because again we have

(7.20) UnPI ' in_1 2 U ... - I

1. n = 2m-1 is odd. Now (7.17) and (7.20) show that

(7.21) U2m-1 < < m+l < Jm - -1 < "m- < < U1 < 0

so that S: -  contains the periodic, hence bounded, element

(7.22) S (x) - 4n(x+ -, -1)m n 2

and there can be no unicity for the problem (7.2) within the subclass of S* of power
n

growth.

2. n - 2m is even. Now (7.17) becomes

(7.23) u2m 
<  
' 1° 

< 
m+l 

<  
-1 < m 

<  
0* 

<  
l 0

-13-
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and these inequalities allow us to show that if (7.19) is of ipmr growth, then all

c v - 0. These results lead to the analogue of proposition V:

VI. If n - 2m is even, and (yj) are of power groeth, then there exists a unique

Sx) e S of power growth satisfyina (7.2).

Concludin remarks. 1. The special case when the data (y) are bounded, and the

solution SWx) is to be bounded, the propositions V and VI were first established by

Subbotin (111. 2. If in (7.2) we have Y1 " ('1)1 for all J, then the solution of (7.2)

is the function

(XIW)On(0-1) i is odd 

(7.24) En(x) 1
n" (x-l)/On(-i-I) if n is even
'n 2 n 2

It is called the Euler spline of degree n, and it Is the solution of the famous Landau-

Kolmogorov extremun problem (see (9] for references).

-14-
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